STATE ESTIMATION FOR K9

Ru-Gang Xu
NASA Ames Research Center
July 31, 2001

Reviewed by NASA-USRP Mentors
Mike Fair, Maria Bualat
Code IC

i

2 FEstimate:

The goul of Estunate is to take advantage of attitude information to produce better pose while

staying Hexible and robust.

Currently there are several instruments that are used for attitude: gyros, inclinometers, and com-
passes. However, precise and useful attitude information cannot come from one instrument. [nte-
gration of rotational rates, from gyro data for example, would result in drift. Therefore, although
gyros are aceurate in the short-term, accuracy in the long term is unlikely. Using absolute instru-
ments such as compass and inclinometers can result in an accurate measurement of attitude in the
long term. However, in the short term, the physical nature of compasses and inclinometers, and
the dynamic nature of a mobile platform result in highly volatile and therefore useless data.

The solution then is to use both absolute and relative data. Kalman Filtering is known to be able to
combine gyro and compass/inclinometer data to produce stable and accurate attitude information.
Since the model of motion is linear and the data comes in as discrete samples, a Discrete Kalman
Filter was selected as the core of the new estimator. Therefore, Estimate can be divided into two

parts: the Discrete Kalman Filter and the code framework.

2.1 The Discrete Kalman Filter:
2.1.1 Introduction to Discrete Kalman Filtering

Kalman Filtering has been a well-researched topic in the past forty or so years proving itself as
an excellent choice for navigational sensor fusion. Although there are several variations in the
technique, the one of primary interest in navigation is the Discrete Kalman Filter.

A Discrete Kalman Filter is described as an optimal recursive linear estimator.? In other words, a
Kalman Filter estimates the state of a noisy linear system (z;) by using a previous estimate and
any new measurements (2x). The system is noisy in the sense that there is both noise in the system

described (wg_;) and noise in the measurement (vg):

Tr = Azg-1 + Bug + wk-l(l)
zx = Hzp + ve(2)
Equation (1) is the linear stochastic difference equation describing the system, while equation (2)

describes the measurement zx with respect to I;. I is a column vector of size n, and 2k is a
column vector of size m. Then the n x n matrix A predicts current state from the previous state.

The no< [matrix 3 then relates the optional control input w, & column vector of size [, to the state.

The m x n matrix H relates the state to the measurement.

[n order to make a Kalman Filter possible in the sense of making the mathematics tractable and
the solution well defined, the noise must be white Gaussian noise. Whiteness implies noise not
correlated with time (i.e. equal power in all frequencies), while Gaussian implies that the noise
is described by a Gaussian probability density curve centered at zero (i.e. p(w) ~ N(0,Q) and
p(n) ~ N{0, R) where @ is the process noise covariance matrix and R i3 the measurement noise

covariance matrix).

Therefore, the state of such a system can only be a vector of Guassian distributions. If given all the
variances and means of the system and measuring devices, the measured input and the previous
state, a Kalman filter can produce a vector of the means and variances describing the current state.
There is no information lost since a Gaussian distribution can be completely described by its first
and second order statistics (i.e. mean (z,) and covariance (P)). Therefore, the new statistics can
then be reentered into the Kalman Filter for the next estimate. These statistics are derived by two

different equations:

e = & + Ki(z = HED)(3)

P, = (I - K H)(PJ)(4)

where P~ = AP _1AT + Q and &y is the derived mean of z; from equation (1).

The principle component of those two equations is the Kalman gain K. K} is picked to minimize
the covariance P, (i.e. equation 4), therefore:

Ky=P HT(HP;H" + R)™!

In summary, the Discrete Kalman Filter can be implemented in 5 simple equations, divided as the
time update and the measurement update equations:>

time update:

Ep = Adgo

P; = AP AT +Q

measurement update:

Re =P HT(HD HT + R)™
Iy = 1..',; + Kl = HJI,;)
Pe = (1 - K H)P,

The time update stage can be thought of as the prediction stage where the next estimate is predicted
from the previous values. The measurement update stage can be thought of as the correction
stage where the predicted values are corrected by the new measurements. This leads to a simple

implementation in code.

2.1.2 The Function Kalman

Kalman Filtering in Estimate i3 used to combine data from any instrument for pose estimation.
The flexibility of the Discrete Kalman Filter and the similarities between position and attitude
allow the creation of a simple single function, called “Kalman”, that is applicable to all types of
pertinent data (distance, velocity, acceleration). The measurement equation (2) allows specification
of the type of data entered, by H. This allows any type of device to input information as long as
the type of information is known. Also, both position and attitude have the same linear model,
which can be divided into each axis (x,y, and z). Therefore, without losing any generality, Kalman
can be designed for simple one-dimensional linear motion. This eliminates the use of large sparse
matrices while creating a more flexible function.

Kalman is basically just the five Discrete Kalman Filter equations applied to one dimensional linear
motion where the state z4 is a vector of distance, velocity and acceleration with no input u, so:

1 AT (AT)?/2
A=[0 1 AT
0 0 1
B=0

The inputs of the function are H, P._1, z4_1, zx, At, and R, and the output is the next estimate
(zk, Pr). The inputs allow the function to be applied to all axes and from all instruments. The
only thing that remains is setting up the many calls to Kalman.

2.2 The Framework

The rest of the code involves using Kalman to input sensor data to a central repository for pose.

l]

Al estimated information is stored in one single steuct, the statetype The statetype includes the

pose, veloeitios, and acceleriations, the caleulated covariances, and last time of npdate.

This struet is aceessed through four functions: estomnale _init, estimate_get_pos, estumate get. at-
titude, and estimate update. Estimate_nit initializes the repository. Estimate_get_pose and esb-
mate_get_location gets pose and location respectively. Estimate_ update npdates the repository.

Estimate_get_pose and estimate_get location can be called anytime. It simply copies the pose and

location from the repository.

Estimate_update is called after a measurement has been made. An instrument calls estimate_update
with its ID, data, and time of measurement. This new data is then Kalman Filtered with the

repository data. This function is the bulk of Estimate.

When estimate_update is called, a different path is taken depending on the device ID, however, the

basic idea is the same: copy the current repository, convert data into earth frame, load the various.

inputs for Kalman, and copy the Kalman outputs into the repository. Conversion of the input data
is done through a transformation matrix created from previously calculated attitude. The complete
inputs needed by Kalman are supplied by the repository and the device. The repository gives the
previous covariance and mean while each device is described by a Device struct. Device contains
the measurement variance, the type of measurement (H and motion type), the raw data from the
device, the time of last update, whether a device is in use, and if the device has given data yet. The
Device gives H and the measurement variance (R) to Kalman. With this information, Kalman can
be called once for each axis to predict the complete state. The new estimate is then copied into

the repository.

This scheme allows Estimate to work in an asynchronous environment. If a device does not call
estimate_update due to failure, congestion, etc., Estimate will only lose some accuracy during that
period. This scheme also allows Estimate to be easily modified to accommodate new instruments.
To add a new instrument, a new Device object and a new case of device ID must be created. The
new case would just be simply three Kalman calls, one each for each axis, using earth-frame data,

the previous estimate, and the Device as inputs.

3 Estimate Applied

3.1 Estimate on K9

Estimate is designed to be used on the K9 rover. Therefore, many initialization parameters were
needed, specifically the variances of the various instruments and the process noise.

KY currently contains an [ML o FCMY, and encoders. The IMU is a package of three gyros
and three aceelerometers(one each for each axis). The TCM gives absolute roll (-30° to 507), pitch
{(-30” to 30°), and yaw (0° to 360°) through i magnetic compass and inclinometers. The encoders
zo through a dead-reckoning function to produce rover frame translational and yaw deltas.

All three instruments were never accurately measured for covariances, and an accurate assessment
of the process noise was never made due to time constraints. Instead, data was gathered from the
MU and TCM as K9 was moving. Only the gyros of the IMU were used. The accelerometers’ drift
rates changed depending on how K9 was moving, therefore, it was omitted from the filter. The
remaining sensors’ filter values were tweaked in Matlab so that Kalman Filtered values came close
to real and useful values. Through trial and error, a well-filtered Estimate was produced.

a1 - - - g -
i } .

3 - i)
02F

03
[/

[}

35
x10°

Figure 1: TCM(noisy signal), IMU(drifting signal), Filtered(clean signal following the TCM)

The noisy TCM data fused with the drifting IMU data produced a relatively stable and accurate
output.

3.2 Results on K9

After Estimate was decently calibrated and Estimate integrated with the navigation and control
software, K9's navigational abilities were tested both indoors and in the field.

A simple test of rotation was done indoors. 360° turns were made with just dead reckoning and
with full use of estimate. Using just encoders, turns resulted in an error on the average around
30°. Estimate turns produced slight differences (5°-10°), but these were not errors of estimation,
but rather of control. With Estimate, K9 knew it overshot or undershot its target, but the motors

had no feedback.

The other inside run was to create 5 w by .5 msquares on acement Hoor by issiing direct commands
racher than using the navigation software. Four types of runs were made: just dead reckoning, dead
reckoning with IMU and compass, dead reckoning with [MU, and dead reckoning with compass.
The last two served as tests that involved failure of devices. Each run was compared to one of
another type because comparison between a real square would be nnreasonable as again there is
no feedback in direct motor control. K9 without the compass produced totally degenerate squares
after the first square was made. K9 with the compass produced reasonable squares, however, due to
wheel slippage, the square would shift in a direction depending whether it was a counterclockwise

or clockwise square.

The field tests were more impressive. K9 ran two types of field runs. The first type was on relatively
fat terrain. The path was a 4 m by 4 m square made by the navigation software (i.e. start at
(0,0), make a square and return to (0,0)). In this case, an absolute comparison can be made as the
path created resulted from feedback of information gathered by Estimate. The difference between
the starting point and the final position of K9 is the error. The percent error can be calculated by
dividing the magnitude of the error by the total distance traveled. After driving one square:

Error in (x,y) Odometer % Error
Encoder (3.7m,1.17m) 162 m 24
Encoder, IMU, TCM (0 m, 0.9 m) 152 m 5.9

The second type of test was a path which included a hill (3 meters long and .5 meters high). Using
the navigation software, a path across the hill and back to the starting point was made. This was
the most interesting test as the path was very uneven and the slippage occurred many times:

Error in (x,y) Odometer % Error
Encoder (4.63 m, 1.7m) 14 m 35
Encoder, IMU, TCM (.25 m,-1.37 m) 17 m 8

4 Conclusion

Although few field tests were made due to time constraints, the positive impact of using Estimate
is apparent, however room for improvement can always be made.

The tests done were not complete to pinpoint future improvements. Future tests should be run
with measurements of ground truth perhaps with GPS. With a complete comparison of the path

traveled, hints on causes of errors can be found.

Hopefully, fully calibrating Estimate will result in the elimation of some of those errors. Esti-
mate currently uses constant measurement and process covariance matrices. With these matrices

Pl

as contants, Kalman Filter covariance converges, making Estinate become an implementation of
recursive weighted squares. On K9, the true values of those matrices are hardly constant. Dynamic
modeling of K9 conld be nsed to produce those covariances. The more complete solution would be
to use Particle Filtering to model each sensor as KY is moving. Another solution would be to use
a Kalman Smoother on raw telemetry data from all the sensors to constrict a covariance for each

type of rin.

[n conclusion, the haphazardly calibrated Estimate works. It would be very interesting to see it
applied to other robots. However, future work is needed for better calibration and more field tests.

5 References:

1. Borenstein, J. and Fong, L, 1996, Gyrodometry: A New Method for Combining Data from
Gyros and QOdometry in Mobile Robots, Proceedings of the 1996 IEEE Conference on Robotics and
Automation, Minneapolis, Apr 22-28, 1996, pp 423-428

2. Fuke, Y and Krotkov, E., 1996, Dead Reckoning for a Lunar Rover on Uneven Terrain, Pro-
ceedings of the 1996 IEEE Conference on Robotics and Automation, Minneapolis, Apr 22-28, 1996,

pp 411-416

3. Welch C. and Bishop G., 2001, An Introduction to the Kalman Filter, TR 95-041, University of
North Carolina at Chapel Hill, Chapel Hill, NC

4. Maybeck, P. S., 1979, Stochastic Models, Estimation, and Control Volume I, Academic Press,

Inc.

5. Inertial Science Inc., 1999, Inertial Measurement Unit, Inertial Science Inc, Newbury Park, CA

6. Precision Navigation Inc., 1999, TCM2 Electronic Compass Module: User’s Manual, Revision
1.08, Precision Navigation Inc., Santa Rosa, CA

bl

